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In 2019, SARS-CoV-2 emerged as a new pathogen that resulted in 
the COVID-19 pandemic. Initially identified in Wuhan, China in 
December 2019 (refs. 1,2), SARS-CoV-2 rapidly spread through-

out the world, leading to an ongoing public health crisis, and, as of 2 
December 2021, there have been over 263 million infections and 5.2 
million deaths3. SARS-CoV-2 causes upper and lower respiratory 
tract infections that are often associated with fever, cough and loss 
of smell and taste. Most infections remain mild, and up to 20–40% 
of patients are asymptomatic. However, some patients experience 
more severe disease and develop systemic inflammation, tissue 
damage, acute respiratory distress syndrome, thromboembolic 
complications, cardiac injury and/or cytokine storm, which can be 
fatal1,4 (Fig. 1). The risk of COVID-19 disease severity depends on 
comorbidities (for example, diabetes, hypertension and obesity), 
age, ethnicity, genetic factors, vaccination status and other condi-
tions5, making understanding the underlying disease mechanisms 
important for risk stratification and clinical triage.

The extensive morbidity and mortality associated with the 
COVID-19 pandemic made the development of SARS-CoV-2 vac-
cines a global health priority. In less than 1 year, several effective 
vaccines targeting the SARS-CoV-2 spike protein from multiple plat-
forms (lipid nanoparticle-encapsulated mRNA, inactivated virion 
or viral-vectored vaccine platforms6) gained emergency use autho-
rization (EUA) or approval and were deployed to billions of people 
worldwide. In countries with high rates of vaccination, markedly 
reduced numbers of infections, hospitalizations and deaths have 
been observed, although the success of vaccination has been jeopar-
dized by the emergence of variants including B.1.351 (Beta), B.1.1.28 
(Gamma), B.1.617.2 (Delta) and the latest B.1.1.529 (Omicron) and 
vaccine hesitancy7. Compared to vaccine countermeasures, spe-
cific treatment options have remained more limited. Remdesivir, 
a viral polymerase inhibitor, has been approved by the Food and 
Drug Administration (FDA) for hospitalized patients, and EUA has 
been granted to the antivirals molnupiravir and paxlovid (combi-
nation of nirmatrelvir and ritonavir) as well as baricitinib, a Janus 
kinase (JAK) inhibitor (in combination with remdesivir); tocili-
zumab, an anti-interleukin (IL)-6 receptor monoclonal antibody; 
and sotrovimab and monoclonal antibody cocktails (casirivimab 
and imdevimab as well as bamlanivimab and etesevimab), which 

are all neutralizing monoclonal antibodies that bind the viral spike 
protein. Among these, baricitinib and tocilizumab represent immu-
nomodulatory strategies and have been used along with systemic 
administration of steroids to control SARS-CoV-2-induced inflam-
mation8. Notwithstanding these EUA and approvals, many of these 
drugs have limited therapeutic indications, and most cases of severe 
disease worldwide remain untreated with specific drugs.

The innate immune system functions as the first line of host 
defense against pathogens, including SARS-CoV-2. Innate immune 
responses limit viral entry, translation, replication and assembly, 
help identify and remove infected cells and coordinate and acceler-
ate the development of adaptive immunity. Cell surface, endosomal 
and cytosolic pattern recognition receptors (PRRs) respond to 
pathogen-associated molecular patterns (PAMPs) to trigger inflam-
matory responses and programmed cell death that limit viral infec-
tion and promote clearance9. However, excessive immune activation 
can lead to systemic inflammation and severe disease. In response 
to innate immune-dependent viral clearance mechanisms, corona-
viruses (CoVs) have evolved evasion strategies to limit host control 
and enhance replication and transmission10–13. Here, we review the 
innate immune detection and signaling pathways that the host uses 
against SARS-CoV-2, highlighting the role of viral entry, critical 
PRRs and signaling pathways, cytokine production and cell death as 
well as viral immune evasion strategies. An improved understand-
ing of these processes may increase our ability to treat and prevent 
CoV infections in this pandemic and beyond.

SARS-CoV-2 viral entry and PRR sensing
SARS-CoV-2 is a member of the Betacoronavirus genus in the 
Coronaviridae family and is related closely to SARS-CoV and 
Middle East respiratory syndrome CoV14,15. The CoV virion con-
tains spike (S), envelope (E) and membrane (M) proteins in the 
viral membrane, with genomic RNA complexed with nucleocapsid 
(N) protein to create a helical capsid. The S protein is a type I gly-
coprotein that forms peplomers on the virion surface. The E pro-
tein is hydrophobic, and the M protein contains a short N-terminal 
ectodomain with a cytoplasmic tail14. The virus also produces sev-
eral open reading frames (ORFs) that encode accessory proteins 
with diverse roles in viral pathogenesis10,11.
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For infection of most host cells, the SARS-CoV-2 S protein 
binds to its principal cellular receptor, angiotensin-converting 
enzyme 2 (ACE2)2 (Fig. 2). Additionally, the host serine protease 
TMPRSS2 is important for proteolytic priming of the S protein 
for receptor interactions and entry16. Other host proteins, such as 
neuropilin-1, heparin sulfate proteoglycans, C-type lectins or furin, 
can also act as cofactors for viral entry17–20. Upon S protein bind-
ing to cells, viral and host membranes can fuse16, releasing viral 
genomic RNA directly into the cytoplasm. Alternatively, in some 
cells, SARS-CoV-2 is internalized into endosomes, and, after low 
pH-triggered cathepsin-mediated cleavage, viral membranes fuse 
with the endosomal membrane to facilitate nucleocapsid entry 
into the cytoplasm21 (Fig. 2). Once in the cytoplasm, SARS-CoV-2 
is believed to follow the same route as other CoVs; CoV genomic 
RNA is translated into two large polyproteins, pp1a and pp1ab, that 
encode 16 nonstructural proteins (NSPs). These proteins facilitate 
formation of the viral replication-transcription complex22,23, which 
generates an antisense negative-strand template from viral RNA. 
The NSPs then reorganize membranes derived from the endoplas-
mic reticulum (ER) and Golgi to form double-membrane vesicles 
to compartmentalize viral replication and transcription away from 
host sensor detection24. When new viral structural proteins are syn-
thesized, they traffic to the ER or Golgi membranes and combine 
with genomic RNA and N proteins to create nascent viral particles. 
Assembly at the ER–Golgi intermediate compartment leads to the 

creation of virion-containing vesicles that can fuse with the plasma 
membrane during exocytosis and release virus into the extracellu-
lar space25,26 (Fig. 2). The steps in viral entry and replication pres-
ent several opportunities for the innate immune system to sense 
viral components. For example, the virion’s S, E and M proteins are 
exposed to host cell surface sensors during the binding step and 
host cytoplasmic sensors could detect viral proteins and nucleic 
acids before their compartmentalization by NSPs. These detection 
steps facilitate activation of inflammatory signaling pathways, cyto-
kine production and cell death.

Innate immune cells, including macrophages, monocytes, den-
dritic cells, neutrophils and innate lymphoid cells (ILCs) such 
as natural killer (NK) cells, are armed with an arsenal of PRRs 
that recognize PAMPs or damage-associated molecular patterns 
(DAMPs) to induce inflammatory signaling pathways and immune 
responses. The five primary PRR families include Toll-like receptors 
(TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), 
nucleotide-binding oligomerization domain (NOD)-like receptors 
(NLRs), C-type lectin receptors and absent in melanoma 2 (AIM2)-like 
receptors9. Signaling through these receptors in innate immune cells 
in response to pathogens, PAMPs or DAMPs leads to production of 
inflammatory cytokines and chemokines as well as induction of cell 
death to clear infected cells. To date, several PRRs, in particular, TLRs, 
RLRs and NLRs and inflammasomes, have been shown to activate 
their signaling pathways in response to SARS-CoV-2.
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Fig. 1 | Clinical manifestations of COVID-19. SARS-CoV-2 infection affects several body systems, including the cardiovascular, gastrointestinal, nervous, 
vascular–lymphatic and rheumatological systems and others. ALT, alanine aminotransferase; ARDS, acute respiratory distress syndrome; AST, aspartate 
aminotransferase; CRP, C-reactive protein; LDH, lactate dehydrogenase.
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TLRs and SARS-CoV-2
Many viruses activate the innate immune system through TLR sig-
naling (Fig. 3). TLRs are expressed throughout the human respi-
ratory tract but show heterogeneous expression across innate 
immune cell populations; for example, TLR3 is more abundant 
in NK cells, whereas TLR4 is more common in macrophages27. 
TLRs generally transduce signals via two key adaptor molecules, 
MyD88 and TRIF. Most TLRs use MyD88 to trigger inflamma-
tory cytokine production; TLR3 is the exception and signals exclu-
sively through TRIF. TLR4 is unique in that it can bind and signal 
through either MyD88 or TRIF28. Downstream of MyD88, nuclear 
factor (NF)-κB, mitogen-activated protein kinases (MAPKs) and 

interferon (IFN) regulatory factors (IRFs) are activated. Nuclear 
translocation of these molecules results in transcriptional activa-
tion of several pro-inflammatory cytokines including tumor necro-
sis factor (TNF), IL-6 and IL-1 along with transcription of genes 
encoding other innate immune sensors, such as NLRP3, and pro-
duction of IFNs and IFN-stimulated genes (ISGs) (Fig. 3). Signaling 
through TRIF also activates IFN production and several TLR4- and 
TLR3-dependent transcription factors, some of which have direct 
antiviral activity28.

SARS-CoV-2-mediated induction of pro-inflammatory signaling 
pathways and cytokine production are attenuated in TLR2-deficient 
murine macrophages and in human macrophages treated with a 
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Fig. 2 | SARS-CoV-2 viral entry and replication cycle. On most cells, the SARS-CoV-2 S protein binds to the cell surface and its cognate receptor ACE2. 
The host serine protease TMPRSS2 helps mediate entry by cleaving S protein. Other potential host receptors and cofactors have been implicated in this 
process, including neuropilin-1, heparin sulfate proteoglycans, C-type lectins and/or furin. The virion enters through membrane fusion or endocytosis. 
After entry, viral RNA is released and translated into viral polyproteins pp1a and pp1ab. These polyproteins are processed by virus-encoded proteases to 
facilitate replication and produce full-length negative-strand RNA and subgenomic RNA. Subgenomic RNA is translated into structural and accessory 
proteins, including S, M, E and N proteins. Structural proteins are inserted into ER and Golgi membranes and transverse to the ER–Golgi intermediate 
compartment (ERGIC), where virions can assemble. Fully formed virions are exocytosed. ssRNA, single-stranded RNA.
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TLR2 inhibitor following stimulation with the SARS-CoV-2 E pro-
tein, suggesting that TLR2 senses the E protein to mount inflamma-
tory responses29,30. Furthermore, the SARS-CoV-2 E protein induces 
TLR2-dependent inflammation in vivo, as serum levels of IL-6 are 
reduced in Tlr2−/− mice upon administration of the E protein29. An 
independent single-cell computational analysis aimed at predicting 
targets that could be modulated to reduce the dysregulated innate 
immune response during SARS-CoV-2 infection also suggests that 
TLR2 is involved in innate immune activation31. Consistent with 

these findings, treatment of K18-hACE2 transgenic mice with 
a TLR2 inhibitor reduces levels of inflammatory cytokines in the 
blood and improves survival following SARS-CoV-2 infection29. 
However, additional work is required to determine whether TLR2 
directly binds the E protein or other SARS-CoV-2 ligands.

Beyond TLR2, the role of other TLRs in SARS-CoV-2 infection 
has not been as conclusively studied in vitro and in vivo. In the con-
text of SARS-CoV, the TLR3 signaling pathway has a protective role 
in vivo26,32–34; Tlr3−/− mice have increased viral burden and impaired 
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pulmonary function compared to control mice during infection 
with mouse-adapted SARS-CoV (MA15)34. Additionally, stimu-
lation with a TLR3 agonist reduces SARS-CoV burden in human 
alveolar epithelial cells32. However, no studies to date have linked 
TLR3 with SARS-CoV-2 sensing specifically. While one genomic 
analysis of patients with severe COVID-19 found an association 
between inborn errors in TLR3 and disease severity35, a follow-up 
study failed to validate these associations36. Therefore, the role of 
TLR3 in SARS-CoV-2 infection remains unclear.

In silico studies suggest that the SARS-CoV-2 S protein may bind 
to TLR1, TLR4 and TLR6, with TLR4 having the highest affinity37. 
TLR4 activation in response to the S protein is supported by reduced 
gene expression of Il1b in S protein-stimulated Tlr4−/− murine mac-
rophages compared with expression in wild-type cells in vitro38. 
However, computational modeling and in vitro analyses show that 
the S protein has high binding affinity to lipopolysaccharide39, rais-
ing concerns that lipopolysaccharide may contaminate purified S 
protein preparations and contribute to the release of cytokines in a 
TLR4-dependent manner. Therefore, whether TLR1, TLR4 or TLR6 
can directly sense the S protein requires further confirmation.

Additionally, TLR7 and TLR8 recognize antiphospholipid anti-
bodies40,41, which are upregulated in patients with severe COVID-19  
(refs. 42,43). X chromosomal TLR7 genetic anomalies have been 
linked to severe COVID-19 disease in young individuals44,45, sug-
gesting that TLR7 has a protective role during SARS-CoV-2 infec-
tion. More investigations are needed to corroborate the roles of 
these and other TLRs in response to SARS-CoV-2 infection.

SARS-CoV-2, RLRs and IFN signaling
Single-stranded RNA derived from genomic, subgenomic or rep-
licative intermediates of SARS-CoV-2 can also be sensed by RLRs 
intracellularly, which include MDA5, RIG-I and LGP2 (refs. 46–49) 
(Fig. 3). RIG-I and MDA5 are the most well-studied RLRs and pro-
vide key regulation of IFN pathways. Following post-translational 
modifications and activation, RIG-I and MDA5 translocate to the 
mitochondria, where they interact with the adaptor protein mito-
chondrial antiviral signaling (MAVS) to form a MAVS signalosome. 
This complex formation activates TNF receptor-associated factor 
(TRAF)3, TANK-binding kinase (TBK)1 and IκB kinase (IKK) 
to induce phosphorylation of IRF3 (refs. 50,51), which facilitates its 
nuclear translocation and the transcription of genes encoding type 
I and III IFNs (Fig. 3). Production and subsequent release of IFNs 
stimulate downstream signaling through IFN receptors (IFNAR1 
and/or IFNAR2 for type I IFNs, IFNLR1 and/or IL10Rβ for type III 
IFNs) in an autocrine and paracrine manner to produce hundreds of 
ISGs with various antiviral functions52,53. For example, the ISG Ly6E 
can prevent SARS-CoV-2 entry54, and members of the IFIT family, 
IFIT1, IFIT3 and IFIT5, inhibit viral replication, and bone marrow 
stromal cell antigen (BST)2 can block viral egress55 in cell lines that 
ectopically or stably express these ISGs. Circulating autoantibodies 
that target type I IFN have also been identified; patients with these 
have reduced IFN responses after SARS-CoV-2 infection56 and 
are at increased risk of severe COVID-19 and death57–59. However, 
fine tuning of a type I IFN response is critical because both over-
activation and underactivation of IFN signaling can be deleterious  
to the host60.

A screen for RNA sensors involved in restriction of SARS-CoV-2 
infection identified MDA5 and LGP2 as key regulators of antivi-
ral type I IFN induction46. Silencing or deleting genes encoding 
MDA5, LGP2 or the adaptor MAVS in human primary lung airway 
epithelial or Calu-3 cells results in reduced type I IFN expression 
during SARS-CoV-2 infection46–48. By contrast, there are conflict-
ing results with RIG-I. One study found that small interfering RNA 
silencing of the gene encoding RIG-I failed to reduce IFN-β produc-
tion in response to SARS-CoV-2 infection in Calu-3 cells46, and its 
genetic deletion by CRISPR–Cas9 targeting in Calu-3 cells provided  

similar results48. However, another study reported that small inter-
fering RNA silencing of the gene encoding RIG-I in Calu-3 cells 
significantly reduced IFN-β expression during SARS-CoV-2 infec-
tion49. Instead of engaging the C-terminal domain of RIG-I that 
normally senses viral RNA, the SARS-CoV-2 genomic RNA 3′ 
untranslated region is recognized by the helicase domain, result-
ing in impaired ATPase activation of RIG-I61. This unconventional 
RIG-I engagement may limit its ability to activate the downstream 
MAVS signaling pathway for type I IFN production61, although 
additional confirmatory studies are required.

SARS-CoV-2, NLRs and inflammasome sensors
NLRs also are reported to respond to SARS-CoV-2 infection and 
induce production of type I IFNs and pro-inflammatory cytokines. 
NLRP3, one of the best characterized inflammasome sensors, is 
triggered in response to PAMPs and DAMPs, leading to activation 
of caspase-1, production and release of bioactive IL-1β and IL-18 
and cleavage of gasdermin (GSDM) D, which forms pores in the 
plasma membrane to drive membrane rupture, mediated by nin-
jurin 1, and pyroptotic cell death62,63. Increased levels of IL-1β and 
IL-18 in plasma correlate with disease severity and mortality in 
patients with COVID-19 (refs. 64,65), and several reports have sug-
gested that NLRP3 senses CoV infection26,66–70.

NLRP3 deficiency abolishes murine hepatitis virus-induced 
caspase-1 and GSDMD activation in murine macrophages66, indi-
cating that CoVs may induce NLRP3 inflammasome assembly. 
Several PAMPs from SARS-CoV, including those derived from 
ORF3a67, ORF8b68, the E protein69 and viral RNA70, can activate 
the NLRP3 inflammasome. In the case of SARS-CoV-2 infection, 
monocytes and lung tissues from patients with COVID-19 con-
tain NLRP3 and apoptosis-associated speck-like protein contain-
ing a caspase-activating and recruitment domain (CARD) (ASC) 
puncta71, suggesting that the NLRP3 inflammasome forms in these 
patients. Additionally, human primary monocytes infected with 
SARS-CoV-2 show NLRP3-dependent caspase-1 and GSDMD 
cleavage and IL-1β maturation71,72.

Several PAMPs from SARS-CoV-2 are implicated in NLRP3 
inflammasome assembly and subsequent cytokine release (Fig. 3).  
GU-rich single-stranded RNA derived from the SARS-CoV-2 
genome activates the NLRP3 inflammasome and cytokine release 
in macrophages70. SARS-CoV-2 ORF3a, also known as viroporin, 
and the N protein also trigger NLRP3 inflammasome activation 
in human cell lines (HEK293 cells with or without inflammasome 
machinery transfected and A549 cells) (refs. 73,74). Despite its ability 
to induce NLRP3 inflammasome activation, the N protein has also 
been associated with inhibition of GSDMD to block pyroptosis and 
IL-1β release75, and the direct role of the N protein in IL-1β release 
remains to be clarified. Upstream, the SARS-CoV-2 E protein trig-
gers TLR2 signaling, which upregulates expression of Nlrp3 and Il1b 
mRNA in macrophages29. Additionally, the S protein upregulates 
NLRP3 protein expression and induces release of IL-1β in macro-
phages obtained from patients with COVID-19 but not in those 
from healthy volunteers76. Mechanistically, it has been proposed that 
SARS-CoV-2 infection causes an imbalance in intracellular potas-
sium efflux to drive NLRP3 inflammasome activation and IL-1β 
and IL-18 release72. Nonetheless, the role of specific SARS-CoV-2 
proteins in triggering this imbalance remains to be characterized.

Beyond NLRP3, microscopy studies also have shown colocal-
ization of the AIM2 inflammasome sensor with ASC specks in 
monocytes from patients with COVID-19 (refs. 77), although the 
functional role of AIM2, a DNA sensor, remains unclear in this 
context. The intracellular sensor of bacterial peptidoglycan, NOD1 
(NLRC1), also contributes to SARS-CoV-2 responses and cytokine 
production. Silencing the gene encoding NLRC1 in lung epithelial 
cells reduces IFN-β expression during SARS-CoV-2 infection46. 
Additional studies are needed to establish the importance of other 
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NLRs and inflammasome sensors in sensing SARS-CoV-2 and pro-
ducing cytokines.

cGAS, STING and SARS-CoV-2 infection
Beyond TLRs, RLRs and NLRs, there are additional cytosolic sen-
sors that can detect viruses and activate pro-inflammatory signal-
ing pathways. The cyclic GMP-AMP synthase (cGAS)–stimulator 
of interferon genes (STING) signaling pathway, which is activated 
upon detection of cytoplasmic DNA, is critical for limiting the 
replication of both DNA and RNA viruses following infection78–83. 
SARS-CoV-2 infection induces mitochondrial damage84, which may 
release mitochondrial DNA into the cytoplasm to activate cGAS, 
contributing to innate immune responses. However, SARS-CoV-2 
accessory proteins ORF3a and 3CL can antagonize cGAS–STING 
signaling, thereby suppressing antiviral immune responses85  
(Fig. 3). Indeed, restoration of cGAS–STING activation and signal-
ing by administering the exogenous STING agonist diABZI inhib-
its SARS-CoV-2 replication and improves survival rates in infected 
human ACE2-expressing transgenic mice86,87, emphasizing the 
importance of a robust signaling response to prevent viral spread.

Cytokine signaling, cell death and cytokine storm
PRR signaling engaged by SARS-CoV-2 induces concurrent release 
of both IFNs and other pro-inflammatory cytokines88. Expression 
of numerous pro-inflammatory cytokines and IFNs is elevated in 
patients with COVID-19, including that of IL-1β, IL-6, TNF, IL-12, 
IFN-β, IFN-γ, IL-17 and others1,89,90. These cytokines aid in clear-
ing infections but also maintain cellular homeostasis. For instance, 
transient activation of inflammatory cytokine receptors and, in par-
ticular, IL-1 signaling stimulates insulin secretion from pancreatic 
beta cells, allowing the beta cell to adapt to increased insulin demand 
during stress91. However, dysregulated release of pro-inflammatory 
cytokines contributes to cytokine storm, defined as a life-threatening 
condition caused by excessive production of cytokines mediated by 
inflammatory cell death (PANoptosis)4. In the context of COVID-19, 
the combination of TNF and IFN-γ contributes to disease pathogen-
esis by signaling cooperatively and inducing inflammatory cell death 
(PANoptosis)92 (Fig. 4). PANoptosis is an innate immune inflamma-
tory programmed cell death pathway dependent on PANoptosomes, 
caspase(s)-containing complexes with or without inflammasome 
components and RHIM-containing proteins. This cell death path-
way cannot be accounted for by pyroptosis, apoptosis, or necropto-
sis 66,92–109. PANoptosis induced by the synergism of TNF and IFN-γ 
depends on signal transducer and activator of transcription (STAT)1 
and IRF1 signaling and leads to activation of caspase-8 to drive 
cell death92,93 (Fig. 4). The combination of TNF and IFN-γ signal-
ing induces a lethal shock syndrome in mice92,110, which mirrors the 
cytokine storm observed in some patients with severe COVID-19 
(ref. 92). Mice treated with blocking antibodies specific to TNF and 
IFN-γ have reduced mortality during SARS-CoV-2 infection as well 
as in other models of cytokine storm92. A computational analysis of 
more than 300,000 single-cell transcriptomes concluded that tran-
scriptional programs of macrophages from patients with COVID-
19 share many features with macrophages stimulated ex vivo with 
TNF and IFN-γ, including high levels of STAT1, IFNGR1, IFNGR2, 
NFKB1 and IL1B111. The abundance of these inflammatory macro-
phages is associated with disease severity in patients with COVID-19 
as well as in patients with autoimmune disease (rheumatoid arthri-
tis) and inflammatory disease (Crohn’s disease and ulcerative coli-
tis)111. Overall, these studies suggest that a positive feedback loop 
exists, in which cytokine secretion causes PANoptosis that results 
in more cytokine release, culminating in a cytokine storm that 
causes life-threatening damage to host tissues and organs4,92 (Fig. 4). 
Pathogens, PAMPs, DAMPs and homeostatic perterbations can all 
trigger PANoptosis66,92,94–98,100,105,109, which could initiate this feedback 
loop and promote inflammation and disease progression.

The link between the excessive cytokine signaling and inflam-
matory cell death could explain the multiorgan damage observed 
in some patients with COVID-19. For example, lung damage and 
acute respiratory distress syndrome occur in many patients with 
severe COVID-19. Mounting evidence suggests that structural 
damage to endothelial cell membranes and ensuing vascular leakage 
contribute to the initiation and propagation of acute respiratory dis-
tress syndrome during SARS-CoV-2 infection112. Additionally, vas-
cular damage, including damage to heart vessels, is a key feature of 
an unprecedented cluster of hyperinflammatory shock syndromes 
in children with COVID-19 that is similar to Kawasaki disease 
and is termed multisystem inflammatory syndrome in children 
(MIS-C)113,114. MIS-C could be a result of endothelial cell damage 
and death triggered by cytokines, possibly due to the effects of TNF 
and IFN-γ. Moreover, endothelial cell-associated anticoagulant 
pathways can be impaired by pro-inflammatory cytokines115, which 
could explain some of the thromboembolic complications reported 
during severe COVID-19 (refs. 116,117), providing yet another patho-
genic mechanism for cytokines in tissue damage.

Another feature of COVID-19 is a depletion of germinal centers 
in the spleen and lymph nodes118, which may be due to lymphocyte 
cell death promoted by TNF and IFN-γ signaling. TNF and IFN-γ 
shock can drive lymphopenia and immunosuppression92,119, and 
high amounts of TNF are found in the remaining germinal centers 
of patients with severe COVID-19, which could limit B cell affinity 
maturation, isotype switching and production of mature antibod-
ies118, leading to detrimental effects on patient outcomes120.

While accumulating evidence suggests that high levels of cyto-
kines are associated with COVID-19 morbidity and mortality, 
some studies have questioned whether cytokine storm occurs in  
COVID-19 (ref. 121). For example, one group reported lower  
levels of IL-6 in patients with COVID-19 than in those with sep-
sis or chimeric antigen receptor T cell-induced cytokine storm 
syndromes122. RNA-seq analysis has revealed reduced cytokine 
expression in peripheral blood mononuclear cells of patients with 
COVID-19 compared to that in those infected with influenza virus123, 
whereas another group found increased expression of TNF and IL-1 
in COVID-19 (ref. 124). However, the conclusions of these studies are 
based on comparisons among patients with cytokine storm-associated 
diseases and not comparisons with healthy individuals122,123. Given 
that SARS-CoV-2 is a respiratory virus, the cytokine profile in the 
local tissue environment may be more informative than interroga-
tion of peripheral blood samples, which has been used in most stud-
ies to date. Indeed, markedly increased levels of pro-inflammatory 
cytokines and chemokines were observed in lung homogenates from 
human ACE2-expressing transgenic mice after SARS-CoV-2 infec-
tion125. Additionally, a study examining the local immune response 
in nasal wash samples from ferrets infected with SARS-CoV-2 found 
increased levels of IL-6, IL-1 and other chemokines in cells infected 
with SARS-CoV-2 compared to cells infected with influenza virus 
on day 7 after infection12. Overall, while cytokines are critical for the 
innate immune response and successful clearance of viral infections, 
their release must be controlled to prevent systemic cytokine storm 
and pathogenic inflammation during SARS-CoV-2 infection.

Viral innate immune evasion strategies
One primary function of the innate immune system during viral 
infection is to induce an inflammatory response that limits viral 
replication. However, CoVs have evolved several evasion strate-
gies to counteract this host defense. SARS-CoV-2 can specifically 
evade antiviral innate immune responses by reducing IFN levels; 
patients with mild and moderate COVID-19 have low levels of 
type I and III IFNs in their serum12. Indeed, SARS-CoV-2 infection  
limits type I and III IFN production at post-transcriptional lev-
els by preventing the release of mRNA from sites of transcription  
and/or triggering transcript degradation in the nucleus13. 
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SARS-CoV-2 also encodes several proteins that disrupt RLR sens-
ing pathways and IFN induction, signaling or effector functions. 
For example, SARS-CoV-2 papain-like protease (PLpro) inhibits 
MDA5 activation by de-ISGylating MDA5, as ISG15 conjugation, or 
ISGylation, of the MDA5 CARD domain is essential for its activation 
following infection with RNA viruses126. Additionally, SARS-CoV-2 
ORF9b and N and M proteins can inhibit expression of IFN-β and 
pro-inflammatory cytokines by interfering with RIG-I and MDA5 
pathways11,127–130. ORF9b also can block the TLR3–TRIF pathway129. 
ORF3b suppresses induction of type I IFN more efficiently than 
its SARS-CoV ortholog10. SARS-CoV-2 ORF6 and ORF8 inhibit 
expression of IFN-β and activation of ISGs11. SARS-CoV-2 NSP1 
and NSP14 and potentially other viral proteins can inhibit trans-
lation and prevent expression of components of the IFN signaling 
pathway131–133. Finally, the SARS-CoV-2 N protein appears to pre-
vent aggregation of viral RNA with MAVS to block induction of the 
IFN pathway134. Gaining further insights into SARS-CoV-2 immune 
evasion strategies and the PRRs and IFN and cytokine-production 
pathways that can counteract them could provide further mechanis-
tic targets for therapeutic development.

Innate immunity and therapeutic development
During the COVID-19 pandemic, many treatment strategies have 
been investigated. The rate of clinical trials for COVID-19 has been 

staggering, with over 7,000 registered through https://clinicaltri-
als.gov/ as of 2 December 2021. In addition to vaccine strategies, 
which have been extensively covered elsewhere135, therapeutic strat-
egies can be divided into antiviral or immunomodulatory thera-
pies (Table 1). Clinical trials of these treatments have led to FDA 
approval of remdesivir and EUA for the antivirals molnupiravir, 
paxlovid (combination of nirmatrelvir and ritonavir), sotrovimab 
and monoclonal antibody cocktails8. These compounds target the 
virus by blocking or disrupting viral replication, preventing viral 
entry by binding the S protein or promoting viral clearance through 
antibody Fc effector functions136–138. In addition, antiviral strategies 
that modulate immune cell activation and inflammation have also 
been investigated. In particular, treatment with type I IFNs has been 
tested in several clinical trials. IFN-α2b treatment reduced the time 
to viral clearance in the upper respiratory tract and the time to reso-
lution of systemic inflammatory markers in an exploratory study139. 
A retrospective study found that administration of IFN-α2b within 
5 d of hospitalization was associated with a decrease in mortal-
ity140. However, this study also found that later administration was 
associated with increased mortality140. Similarly, preclinical stud-
ies showed that exogenous type I IFN therapy reduces viral load 
when administered before SARS-CoV-2 infection, but this effect 
is limited once infection is established141. These results highlight 
the importance of understanding disease pathogenesis to identify 
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therapeutic windows for treatments. Type I IFN has also been given 
in combination with other antivirals and shown to improve patient 
outcomes142. Additional evidence suggests that treatments that 
upregulate endogenous type I IFN production may also be benefi-
cial. For instance, preclinical studies found that IFN signaling trig-
gered by treatment with the STING agonist limited SARS-CoV-2 
infection86,87,143; similar results were observed with a RIG-I ago-
nist144. In theory, STING or RIG-I agonists could be repurposed as 
prophylactic agents for vulnerable patient populations.

Treatment with type III IFN also might be advantageous dur-
ing SARS-CoV-2 infection. While IFN-λ was found to induce lung 
epithelial barrier damage in response to viral infection in murine 
models145, increased IFN-λ1 and IFN-λ2 levels in serum are associ-
ated with better prognosis for patients with COVID-19 in obser-
vational studies146,147. On a cellular level, pretreatment of human 
primary airway epithelial cells, Calu-3 cells, intestinal epithelial 
cells and colon organoids with IFN-λ reduces levels of SARS-CoV-2 
infection148–150, and loss of the type III IFN receptor increases cellu-
lar susceptibility to infection149. In a murine model of SARS-CoV-2 
infection, treatment with Peginterferon Lambda-1a, a pegylated, 
recombinant IFN-λ1a, reduced SARS-CoV-2 replication in mice150. 
Based on these preclinical data, clinical trials have begun investigat-
ing Peginterferon Lambda-1a treatment in patients with COVID-
19. Among patients with mild disease in a phase 2 trial, there were 
no significant differences in time to resolution of symptoms or 
other clinical metrics between Peginterferon Lambda-1a and pla-
cebo groups151. However, a second phase 2 trial found that treatment 
with Peginterferon Lambda-1a improved the odds of achieving viral 
clearance by day 7 (ref. 152). Further studies are needed to determine 
whether IFΝ-λ treatment is advantageous for particular patient 
populations.

In addition to the antiviral therapies discussed above, immu-
nomodulatory therapies have been extensively evaluated in 
clinical trials for COVID-19 due to the pathogenicity associated 
with excess cytokine production, cell death and cytokine storm. 
Corticosteroids, such as dexamethasone, can inhibit the production 
of pro-inflammatory cytokines and prevent systemic inflammation. 
However, the large randomized open-label phase 2–3 RECOVERY 
trial evaluating treatment strategies in hospitalized patients 
showed that dexamethasone was effective only in patients requir-
ing mechanical ventilation or supplemental oxygen153. Moreover, 
prolonged use or overuse of corticosteroids can generally increase 
the risk of secondary infections, although studies in patients with 
COVID-19 have reported conflicting results to date154,155. A more 
targeted approach of modulating immune responses may be prefer-
able. To this end, many anti-cytokine therapies have been evaluated, 
leading to EUA for the anti-IL-6 receptor-blocking antibody tocili-
zumab in hospitalized patients receiving systemic corticosteroids 
and requiring supplemental oxygen, ventilation or extracorporeal 
membrane oxygenation8. Elevated IL-6 levels are associated with 
disease severity1,89,90, as are increases in the downstream marker 
of inflammation, C-reactive protein (CRP)156. CRP is functionally 
linked to complement activation and inflammatory processes157, 
and IL-6 is known to play both protective and pathological roles 
in the immune response to viral infection through its control of 
gene expression and signaling pathways158. However, clinical trial 
results with anti-IL-6 therapies in COVID-19 have been mixed, 
with phase 3 COVACTA and REMDACTA (tocilizumab) and 
Kevzara and SARTRE (sarilumab) trials failing to improve clini-
cal status or reduce mortality159–162 and the phase 3 EMPACTA trial 
of tocilizumab reducing the number of patients requiring ventila-
tion but not improving mortality163. The phase 3 REMAP-CAP trial 
did find tocilizumab and sarilumab to be superior to the control in 
increasing the number of organ support-free days for patients in the 
intensive care unit as well as showing an improvement in their 90-d 
survival164. Due to these conflicting findings, more studies are likely 
needed to identify the particular patient population or disease stage 
that would benefit the most from anti-IL-6 treatment.

Growing evidence suggests the importance of inflammasome- 
dependent cytokines in COVID-19 pathogenesis64,65,67–72, and 
anti-IL-1 therapies also have been evaluated. An observational 
study found that canakinumab, an anti-IL-1β antibody, can lead to 
clinical improvement for hospitalized patients with COVID-19 (ref. 
165), but a more recent randomized phase 3 study found no differ-
ence between canakinumab and control groups for survival without 
ventilation166. The phase 3 study only used a single canakinumab 
infusion, whereas the observational study used two infusions, which 
may have impacted the findings. Anakinra, an IL-1 receptor antago-
nist, has also been evaluated. While earlier studies failed to show an 
effect167, an open-label trial reported a reduction in inflammatory 
markers in patients who received anakinra168, and a retrospective 
analysis found that early treatment with anakinra with or without 
glucocorticoids reduced mortality compared to standard-of-care 
treatment169.

Given the possible contribution of TNF to COVID-19 patho-
genesis1,89,90,92, several anti-TNF antibodies are under evaluation 
in clinical trials. Case studies have suggested that anti-TNF thera-
pies may confer protection as prophylaxis, as patients on anti-TNF 
treatment for rheumatic diseases who became infected with 
SARS-CoV-2 tended to have lower rates of hospitalization170. IFN-γ 
is another critical cytokine in COVID-19 pathogenesis1,89,90,92, and 
the anti-IFN-γ antibody emapalumab, which is FDA-approved for 
hemophagocytic lymphohistiocytosis, is also being evaluated as a 
COVID-19-treatment strategy. This therapeutic approach may be 
linked mechanistically to preclinical data showing that combina-
tion of anti-TNF and anti-IFN-γ treatment can decrease clini-
cal features of cytokine storm driven by PANoptosis and reduce 

Table 1 | Approved and experimental treatment strategies for 
COVID-19

Category FDA approved or EUA Under investigation

Antivirals Remdesivir; 
molnupiravir; paxlovid 
(combination of 
nirmatrelvir and 
ritonavir); sotrovimab; 
anti-spike monoclonal 
antibody cocktails 
(REGEN-COV 
[casirivimab–
imdevimab]; 
bamlanivimab–
etesevimaba)

Chloroquine and/or 
hydroxychloroquine; 
IFN-α, IFN-β, IFN-λ 
therapy; STING agonists; 
RIG-I agonists

Cytokine inhibition Anti-IL-6 antibody 
(tocilizumab)

Anti-IL-6 antibody 
(sarilumab; siltuximab; 
levilimab)

Anti-IL-1 therapy 
(canakinumab; anakinra; 
rilonacept)

Anti-TNF antibody 
(infliximab; adalimumab; 
certolizumab; 
etanercept; golimumab)

Anti-IFN-γ antibody 
(emapalumab)

Inflammatory 
signaling inhibition

Baricitinib Dexamethasone

aOn 25 June 2021, the FDA issued a pause on the distribution of bamlanivimab–etesevimab due to 
lack of efficacy against the Beta and Gamma viral variants.
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SARS-CoV-2-associated death in mice92. Additionally, targeting the 
pro-inflammatory JAK–STAT signaling pathway in PANoptosis is a 
potential strategy to mitigate disease92. Indeed, baricitinib, a JAK1–
JAK2 inhibitor, was granted EUA for treatment of COVID-19 based 
on results of the phase 3 ACTT-2 trial in hospitalized patients171. 
Baricitinib treatment combined with remdesivir was better than 
remdesivir alone in reducing recovery time in these patients171, 
highlighting the utility of blocking inflammatory signaling as a 
therapeutic strategy.

Beyond targeting specific cytokines, other strategies have focused 
on harnessing the power of ‘trained immunity’, which describes the 
long-term functional reprogramming of innate immune cells follow-
ing activation that results in enhanced responses to subsequent infec-
tions172. This is seen most clearly in the Bacillus Calmette–Guérin 
(BCG) vaccination strategy, in which patients are immunized with 
an anti-tuberculosis vaccine, and nonspecific protective effects can 
carry over to reduce the risk of respiratory infections173. In the con-
text of COVID-19, correlative studies have suggested that countries 
with childhood BCG vaccination programs may have reduced rates 
of disease174,175, and a study of healthcare workers revealed decreased 
rates of SARS-CoV-2 infection in those who had previously received 
the BCG vaccine176. However, some results have been contradic-
tory177, and randomized controlled trials are ongoing to confirm 
whether this type of trained immunity strategy should be pursued.

Overall, targeting innate immunity has been a focus of COVID-
19 disease interventions, although treatments to date have had 
limited success. Due to various aspects of disease associated with 
SARS-CoV-2 infection and the ensuing host response, some 
therapeutics may be more beneficial in certain stages of disease. 
Identifying which therapies to use and when to implement them 
will likely be critical for successful treatment. Additionally, combi-
nation therapies (including with antiviral antibodies) or targeting 
multiple cytokines concurrently may have added benefits, and these 
strategies should continue to be evaluated.

Summary and future directions
In spite of rapid advances in basic and translational science in 
the past 2 years, SARS-CoV-2 and COVID-19 continue to pose 
an important global health threat. Innate immune cells, includ-
ing ILCs that reside in the mucosal epithelia, are an essential first 
line of defense against SARS-CoV-2 infection. Preliminary clinical 
studies have shown that worsened disease severity and increased 
risk of hospitalization are associated with reductions in ILC abun-
dance178 and that expansion of the ILC2 population is linked to 
recovery from COVID-19 (ref. 179), highlighting the importance of 
innate immune cells to counteract infection180. The innate immune 
system uses an array of sensors and effector molecules, including 
TLRs, RLRs, NLRs and inflammasome sensors as well as cGAS and 
STING, to directly and indirectly sense the virus or viral compo-
nents. Downstream of sensing, IFN signaling, cytokine production 
and cell death are key features of the innate immune response that 
can reduce viral replication and eliminate infected cells to prevent 
viral spread. However, SARS-CoV-2 encodes proteins and mecha-
nisms that counteract innate immune defenses. As a complicat-
ing factor, hyperactivation of the host innate immune response 
is often associated with cell death, cytokine storm, severe disease 
and mortality. For these reasons, host immunomodulatory drugs 
that temper inflammatory responses, including baricitinib and 
tocilizumab, have been evaluated and granted EUA for treatment 
of severe COVID-19, and many others are under investigation. A 
more detailed understanding of the host innate immune response 
to SARS-CoV-2 might help pharmacokinetics achieve the balance 
of inflammation and immunomodulation that optimizes antiviral 
responses without causing excessive pathological inflammation. 
One advantage of targeting innate immunity and host molecules 
is that this approach should be less vulnerable to viral evolution,  

variant emergence and resistance, which have jeopardized the effi-
cacy of current COVID-19 vaccines and antiviral antibody-based 
therapies. As new strains emerge, it will be critical to continue to 
evaluate the efficacy of current therapeutic strategies and optimize 
treatment options.

Beyond enhancing our understanding of the underlying mecha-
nisms of disease in COVID-19, it will also be important to consider 
differences in innate immune activation that occur based on comor-
bidities, age, sex and other underlying factors. These likely contrib-
ute to varying disease severities observed across patient groups5. 
Additionally, most studies to date have considered innate immune 
responses in adults. Given the growing number of pediatric infec-
tions181, some of which are severe and associated with inflammatory 
syndromes and MIS-C, there is a need to study immune responses 
in this population. A deeper understanding of innate immunity to 
SARS-CoV-2 and associated evasion strategies may help to gener-
ate new therapeutic approaches that mitigate severe disease, provide 
treatments for the ongoing pandemic and identify countermeasures 
to prevent complications of future ones.
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